

 Navigation

 	
 index

 	
 next |

 	Jules 0.3.0 documentation

Welcome to Jules!

Jules is a static blog generator named after a victorian-ish era literary or
intellectual character, because that’s a trendy thing to do.

The design is flexible and plugin-oriented. Much of the built-in functionality
is available through a set of plugins, which creates an architecture very prone
to adaptation and customization. One of the major goals (though not yet reached)
is template impartiality.

Today, Jules is a very capable little static website generator you may find
useful for your personal, project, or organization site.

Jules is maintained by Calvin Spealman [http://www.ironfroggy.com/] (AKA @ironfroggy [http://twitter.com/ironfroggy])

You can install Jules easily with

pip install jules

Which will install the latest version from PyPI [http://pypi.python.org/pypi/jules].

Table of Contents

	Getting Started

	Jules API

	Template API

	Roadmap

Overview

Jules one or more input directories (called packs), combines groups of files
(bundles) which share their base name. For example, “projects.j2” as a template
and “projects.yaml” as data, may be one bundle. These, after processing and
allowing plugins a chance to extend Jules’ abilities, are rendered into yhour final
site.

An example layout:

	Packs
	Bundles
	Files

	HTML5 Boiler Pack
	base
js/jquery.min
	base.j2
lib/jquery.min.js

	LESS CSS Pack
	js/less.min
	js/less.min.js

	Blog Starter
	index
	index.j2

	Your site pack
	index.yaml

	site_base
	site_base.j2

which might render into the a site like:

/
├── index.html
└── js/
 ├── jquery.min.js
 └── less.min.js

Get started making sites easily today.

 Copyright 2012, Calvin Spealman.
 Created using Sphinx 1.1.3+.

 Brought to you by Read the Docs

 	latest

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Jules 0.3.0 documentation

Getting Started

First, you’ll need to install Jules. You can do so with a simple
pip install Jules, or you can checkout a copy directly from the GitHub
repository [http://github.com/ironfroggy/jules]. You can quickly begin
your first Jules website with the init subcommand.

jules init my-new-site
cd my-new-site
jules build
jules serve

Which will produce and empty site with all the parts a Jules project needs.
You can view the site, running with the jules serve command, by visiting
http://localhost:8000/ on your local machine.

my-new-site/
├── site.yaml
├── contents/
│ ├── index.yaml
│ ├── first-post.yaml
│ └── first-post.rst
├── static/
│ ├── css/
│ │ └── site.less
│ ├── img/
│ └── js/
└── templates/
 ├── site_base.j2
 ├── tag.j2
 ├── post.j2
 └── index.j2

We can break down the files produced and what all the parts do.

	
	site.yaml

	Provides global configuration for the site

	
	contents/

	All your Restructured Text content goes here; Your blog posts and pages.

	
	templates/

	Jinja2 templates defining your layout are found here.

	
	static/

	Javascript, images, and CSS and Less stylesheets are all located under static/

Site Configuration

Your site.yaml will contain a basic configuration and a few values will
obviously need customized.

title: "My New Site"
subtitle: "A Website For Me!"
google_analytics_id: "UA-XXXXXX-XX"
domain: "www.example.com"
default_author: "You <you@example.com>"
packs:
- "jules:html5boilerplate"
- "jules:lesscss"
- "jules:atom"
- "jules:pygments"
- "dir:templates"
- "dir:static"
- "dir:contents"
bundle_defaults:
 output_ext: ""
 render: jinja2
collections:
 tags:
 key_pattern: "{value}"
 match:
 status: published
 group_by:
 in: tags
 meta:
 render: jinja2
 template: tag.j2

While most of these are self-explainatory, we’ll walk through.

title: "My New Site"
subtitle: "A Website For Me!"
google_analytics_id: "UA-XXXXXX-XX"
domain: "www.example.com"
default_author: "You <you@example.com>"

These basic fields should be the most obvious. These fields, like everything
in site.yaml, will be available in templates through the config variable.

bundle_defaults:
 output_ext: ""
 render: jinja2

We set a few defaults for pages that will be rendered on our site. We want to
render with no extension, for clean URLs, and we want to render with jinja2
templates.

packs:
- "jules:html5boilerplate"
- "jules:lesscss"
- "jules:atom"
- "jules:pygments"
- "dir:templates"
- "dir:static"
- "dir:contents"

We configure our site with a list of packs. Every pack is a directory
containing content, assets, or templates, which are all combined into your
final site. This allows Jules to offer
bits of functionality and shortcuts in self-contained pieces for you to pick
or skip, as they suit your needs.

In this default site, we have three packs from Jules
offering a basic layout based on the excellent HTML5 Boilerplate project,
the assets needed to use LESS CSS for easier site styling, and the atom pack
to provide a template to generate Atom feeds.

The other three packs are the directories you’ll find in the site folder,
separated for you into templates, static files, and content. These are used
in the default starter site, but you can define any packs however you want
to split up your site’s input.

collections:
 tags:
 key_pattern: "{value}"
 match:
 status: published
 group_by:
 in: tags
 meta:
 render: jinja2
 template: tag.j2

Collections allow us to group pages on the site with some common attribute,
sharing tags in this case. The collection of pages is itself a page we
can provide a tag for to render into the site, so we’ll have pages for
every tag found.

We could group pages by other factors, such as posts made in a series or
separate blogs on a single installation.

Contents

The part you’ll spend most of your time in is the contents/ directory.

The files here define all the pages, blog posts, and other types of content
you’ll use on your site. Typically, a page consists of a configuration file
(YAML) and a content file (ReST).

In the example site provided, there is an index.yaml configuring the
front page, and a pair of files first-post.yaml and first-post.rst
defining a sample blog post. These are grouped into the bundles index
and first-post.

template: index.j2

In the site configuration we set bundle defaults to render with Jinja2, so
all we need to specify for the front page is the name of the template.

A bigger example is the example blog post, which is actually two files. The
first configures the page (first-post.yaml) and the second contains the
contents of the post (first-post.rst). The contents are in restructured
text, which is a great mark up language to write plain-text which can be
converted into a number of presentation formats.

Other content formats can be added easily by the plugin architecture, and
more will be included out of the box soon.

title: First Post
status: published
publish_time: !!timestamp '2012-06-23 10:00:00'
render: jinja2
template: post.j2
tags:
- test

The post is configured with a title, a publication status and time, and the
same render and template directives shared by the front page. The post also
has a list of tags, and the templates provided will generate a list of all
the published tags and build index pages for all of them.

Now, to see our site we just need to run jules build from inside the
site directory. Jules will look for the site.yaml and then load all the
configured packs, parse your content, collect your posts and tags, and render
the site to _build.

Finally, if you want to see the site in action, just run the serve command
after building.

jules serve

And direct your browser to http://localhost:8000/ to see it in action.

When you’re ready to deploy, your complete website is sitting in ./_build
waiting to be copied to your webserver.

 Copyright 2012, Calvin Spealman.
 Created using Sphinx 1.1.3+.

 Brought to you by Read the Docs

 	latest

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Jules 0.3.0 documentation

Jules API

	
class jules.JulesEngine(src_path)

	
	
add_bundles(bundles, replace=False)

	Add additional bundles into the engine, mapping key->bundle.

	
find_bundles()

	Find all bundles in the input directories, load them, and prepare them.

	
get_bundle(*args, **kwargs)

	With the same parameters as get_bundles_by() find exactly one
bundle, and raise ValueError if 0 or more than 1 are found.

	
get_bundles_by(*args, **kwargs)

	Find bundles in the engine filtered and ordered as needed.

order_key: The name of a meta field to order the results by
order: ‘asc’ or ‘desc’ (default: ‘asc’)
limit: The number of resuls to return (default: unlimited)

Any additional keyword arguments are taken as meta field values
which bundles must match in order to be matched.

For example, to find all published bundles and give the most recent
first:

engine.get_bundles_by(‘updated_time’, ‘desc’, status=’published’)

	
get_template(name)

	Load one template by name.

	
load_config()

	Populates engine.config with the site configuration.

	
load_plugins(ns='jules.plugins')

	Load engine plugins, and sort them by their plugin_order attribute.

	
middleware(method, *args, **kwargs)

	Call each loaded plugin with the same method, if it exists.

	
pipeline(method, first, *args, **kwargs)

	Call each loaded plugin with the same method, if it exists,
passing the return value of each as the first argument of the
next.

	
prepare()

	Prepare a site by loading configuration, plugins, packs, and bundles.

	
prepare_bundles()

	Prepare the bundles, allow plugins to process them.

	
render_site(output_dir)

	Render all bundles to the output directory.

	
walk_bundles()

	Iterate over (key, bundle) pairs in the engine, continuing to yield
new bundles if they are added to the engine during the process of
walking over the bundles.

	
class jules.Bundle(key, defaults=None)

	Each bundle is a collection of input files, properties, and meta data.

	
add(input_dir, directory, filename)

	Add a single file to the bundle.

	
by_ext(ext)

	Find one file in the bundle with the given extension, or return None

	
content = None

	

	
get_bundles()

	

	
meta

	Bundle meta data loaded from a YAML file in the bundle.

	
parts

	

	
prepare(engine)

	Prepare the bundle for the engine.

	
recent

	The updated, published, or created time. The first to exist is given.

	
render(engine, output_dir)

	Render the bundle to the output. “Render” can mean rendering a
Jinja2 template or simply copying files, depending on the bundle and
configuration.

	
url()

	Find the url the bundle will be rendered to.

	
write_meta()

	Writes any changes in the meta data back to the YAML file.

 Copyright 2012, Calvin Spealman.
 Created using Sphinx 1.1.3+.

 Brought to you by Read the Docs

 	latest

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Jules 0.3.0 documentation

Template API

Within your templates, you’ll have access to a few things that let you access
both the current page being rendered and other pages, as well as information
about the site itself.

bundle

The current page being rendered.

	
Bundle.recent()

	The updated, published, or created time. The first to exist is given.

	
Bundle.url()

	Find the url the bundle will be rendered to.

meta

The configured metadata for the current bundle is available easily.

	meta.title

	meta.publish_time

	meta.created_time

	meta.updated_time

	meta.status

	meta.tags

This is all the data from the bundle’s YAML file.

engine

The Jules “Engine” usde to process and coordinate the website rendering is
available for access to a lot of useful facilities.

	
JulesEngine.get_bundles_by(*args, **kwargs)

	Find bundles in the engine filtered and ordered as needed.

order_key: The name of a meta field to order the results by
order: ‘asc’ or ‘desc’ (default: ‘asc’)
limit: The number of resuls to return (default: unlimited)

Any additional keyword arguments are taken as meta field values
which bundles must match in order to be matched.

For example, to find all published bundles and give the most recent
first:

engine.get_bundles_by(‘updated_time’, ‘desc’, status=’published’)

	
JulesEngine.get_bundle(*args, **kwargs)

	With the same parameters as get_bundles_by() find exactly one
bundle, and raise ValueError if 0 or more than 1 are found.

Head to the API documentation for everything available here.

config

The parsed site.yaml configuration is available from any
template.

bundles

All of the bundles on the site are available through the bundles variable.

 Copyright 2012, Calvin Spealman.
 Created using Sphinx 1.1.3+.

 Brought to you by Read the Docs

 	latest

 Navigation

 	
 index

 	
 previous |

 	Jules 0.3.0 documentation

Roadmap

Plans

Remove bundle status in favor of using source control branches for drafts

Instead of trying to maintain status of items to keep unpublished things from hitting the listing pages and feeds, just create a branch and write there. Merge back to master to publish. Jules will assume you keep your site in a good version control system, like Git or Mercurial.

Possibly this might include optional commands to manage the post branches for you.

Change atom feeds to be explicit

Rather than add every published page to feeds, I’d like feed items to be added as an explicit action. This allows a few useful features.

	Published posts that aren’t in feeds. Good for archive and index pages

	Can re-post something to a feed when it gets an update

	Can control better what contents go into a feed

Changelog

0.2.0.1

	Fixed generation of per-collection (tag listings, etc.) Atom feeds

0.2

	Added iso8601 filter for Atom complient datetime formats

	Rendered output is UTF8 allows entities defined in ReST

	When adding bundles, check for duplicates (conflicts between real and implied bundles)

	Updated the starter site to improve formatting

	Allow bundle configurations to be defined for collection/tag pages, as long
as the bundle key matches.

	Added tox tests to ensure packaging, install, site init, and site building work correctly on 2.7 and 3.2

0.1.1

	Documentation improvements

0.1

	Initial release

 Copyright 2012, Calvin Spealman.
 Created using Sphinx 1.1.3+.

 Brought to you by Read the Docs

 	latest

 Navigation

 	
 index

 	Jules 0.3.0 documentation

Index

 A
 | B
 | C
 | F
 | G
 | J
 | L
 | M
 | P
 | R
 | U
 | W

A

 	

 	add() (jules.Bundle method)

 	

 	add_bundles() (jules.JulesEngine method)

B

 	

 	Bundle (class in jules)

 	

 	by_ext() (jules.Bundle method)

C

 	

 	content (jules.Bundle attribute)

F

 	

 	find_bundles() (jules.JulesEngine method)

G

 	

 	get_bundle() (jules.JulesEngine method), [1]

 	get_bundles() (jules.Bundle method)

 	

 	get_bundles_by() (jules.JulesEngine method), [1]

 	get_template() (jules.JulesEngine method)

J

 	

 	JulesEngine (class in jules)

L

 	

 	load_config() (jules.JulesEngine method)

 	

 	load_plugins() (jules.JulesEngine method)

M

 	

 	meta (jules.Bundle attribute)

 	

 	middleware() (jules.JulesEngine method)

P

 	

 	parts (jules.Bundle attribute)

 	pipeline() (jules.JulesEngine method)

 	

 	prepare() (jules.Bundle method)

 	

 	(jules.JulesEngine method)

 	prepare_bundles() (jules.JulesEngine method)

R

 	

 	recent (jules.Bundle attribute)

 	recent() (jules.Bundle method)

 	

 	render() (jules.Bundle method)

 	render_site() (jules.JulesEngine method)

U

 	

 	url() (jules.Bundle method), [1]

W

 	

 	walk_bundles() (jules.JulesEngine method)

 	

 	write_meta() (jules.Bundle method)

 Copyright 2012, Calvin Spealman.
 Created using Sphinx 1.1.3+.

 Brought to you by Read the Docs

 	latest

 _static/down.png

_static/plus.png

_static/comment.png

_static/minus.png

_static/comment-bright.png

_static/ajax-loader.gif

_static/file.png

search.html

 Navigation

 		
 index

 		Jules 0.3.0 documentation »

 Search

 Please activate JavaScript to enable the search
 functionality.

 From here you can search these documents. Enter your search
 words into the box below and click "search". Note that the search
 function will automatically search for all of the words. Pages
 containing fewer words won't appear in the result list.

 © Copyright 2012, Calvin Spealman.
 Created using Sphinx 1.1.3+.

 Brought to you by Read the Docs

 		latest

_static/comment-close.png

_static/up-pressed.png

_static/down-pressed.png

_static/up.png

